Math 236, solutions to practice exam

1. Here is a truth table involving the two propositions:

P	Q	R	$Q \vee R$	$P \Rightarrow(Q \vee R)$	$P \Rightarrow Q$	$P \Rightarrow R$	$(P \Rightarrow Q) \vee(P \Rightarrow R)$
T							
T	T	F	T	T	T	F	T
T	F	T	T	T	F	T	T
T	F						
F	T						
F	T	F	T	T	T	T	T
F	F	T	T	T	T	T	T
F	F	F	F	T	T	T	T

Comparing the fifth column and the last column, we see that they are the same, and hence the two propositions are logically equivalent.
2. There exists a positive integer n such that for all positive integers k, either k is not prime or $k^{2}>n$.
3. We argue by induction on n.

When $n=1$, the claim is that $\frac{1}{1 \cdot 5}=\frac{1}{4(1)+1}$, which is clearly true.
Now suppose that $k \geq 1$ is given, and that the result holds for k. Then our induction hypothesis says that

$$
\frac{1}{1 \cdot 5}+\frac{1}{5 \cdot 9}+\cdots+\frac{1}{(4 k-3)(4 k+1)}=\frac{k}{4 k+1} .
$$

Now note that $\frac{1}{(4(k+1)-3)(4(k+1)+4)}=\frac{1}{(4 k+1)(4 k+5)}$, and when we add this to both sides of the equation above, we find

$$
\begin{aligned}
\frac{1}{1 \cdot 5}+\frac{1}{5 \cdot 9}+\cdots+\frac{1}{(4 k-3)(4 k+1)}+\frac{1}{(4 k+1)(4 k+5)} & =\frac{k}{4 k+1}+\frac{1}{(4 k+1)(4 k+5)} \\
& =\frac{k(4 k+5)+1}{(4 k+1)(4 k+5)} \\
& =\frac{(4 k+1)(k+1)}{(4 k+1)(4 k+5)} \\
& =\frac{k+1}{4 k+5}
\end{aligned}
$$

This chain of equations establishes the result for $k+1$, and completes the proof.
4. (a) This statement is false. Here is a counterexample: let $A=\{1\}$ and $B=\{2\}$. Then we have $\mathcal{P}(A \cup B)=\{\emptyset,\{1\},\{2\},\{1,2\}\}$ and $\mathcal{P}(A) \cup \mathcal{P}(B)=\{\emptyset,\{1\},\{2\}\}$. Note that $\{1,2\} \in \mathcal{P}(A \cup B)$ but $\{1,2\} \notin \mathcal{P}(A) \cup \mathcal{P}(B)$.
(b) This statement is true. To prove it, suppose that $S \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Then either $S \in \mathcal{P}(A)$ or $S \in \mathcal{P}(B)$. If $S \in \mathcal{P}(A)$, then $S \subseteq A$, and therefore $S \subseteq A \cup B$, whence $S \in \mathcal{P}(A \cup B)$. Similarly, if $S \in \mathcal{P}(B)$, then $S \subseteq B$, and therefore $S \subseteq A \cup B$, whence $S \in \mathcal{P}(A \cup B)$. In either case, $S \in \mathcal{P}(A \cup B)$, so the result holds.
(c) This statement is false, since we proved in part (a) that $\mathcal{P}(A \cup B) \nsubseteq \mathcal{P}(A) \cup \mathcal{P}(B)$.
5. To prove that a number is not rational, it's a good idea to use an indirect proof. Let's use a proof by contradiction. Suppose to the contrary that $\log _{3}(5)$ is rational. Then there exist integers p and q such that $\log _{3}(5)=p / q$. Note that since $\log _{3}(5)$ is positive (in fact, since $5>3$, it is at least 1), we in fact have that both p and q are positive. By the definition of logarithm, $\log _{3}(5)=p / q$ means that $3^{p / q}=5$. Raising both sides to the q power then gives $3^{p}=5^{q}$. But 3^{p} is divisible by 3 (because p is a positive integer), and 5^{q} is not. This contradiction proves the theorem.
6. (a) R is not symmetric, since $(2,1) \in R$ but $(1,2) \notin R$. R is not anti-symmetric, since $(1,3) \in R$ and $(3,1) \in R$ but $1 \neq 3$.
(b) To be systematic about this, we need to first consider all $(x, y) \in R$ with $x=1$. This gives just one pair, namely $(1,3)$, so $y=3$. Now let's find all (y, z) with $y=3$, namely $(3,1)$ and $(3,3)$. Transitive requires that since R contains the two pairs $(1,3)$ and $(3,1)$, then S must contain (1,1). Also, since R contains $(1,3)$ and (3,3), S must contain (1,3); but R already has $(1,3)$, so we don't need to add anything.
So we must add $(1,1)$ to R to get the relation $\{(1,1),(2,1),(1,3),(3,1),(3,3),(4,1)\}$. Considering all $(x, y) \in R$ with $x=1$ as before, we see that we do not need to add any elements to the new relation. So consider all $(x, y) \in R$ with $x=2$. The only one that needs attention is the pair $(2,1)$ and $(1,3)$; we must add $(2,3)$, which gives a new relation

$$
\{(1,1),(2,1),(2,3),(1,3),(3,1),(3,3),(4,1)\}
$$

Now if we considering all $(x, y) \in R$ with $x=1$ or $x=2$, we need to add no new elements. The same goes for $x=3$. To account for the pairs with $x=4$, we need to add $(4,3)$. Thus we take

$$
S=\{(1,1),(2,1),(2,3),(1,3),(3,1),(3,3),(4,1),(4,3)\} .
$$

7. (a) Reflexive: Yes, since $(A-A)=\emptyset$, so $(A-A) \cup(A-A)=\emptyset$.
(b) Symmetric: Yes, since $S \cup T=T \cup S$ for any sets S and T, and so $A R B$ implies $(A-B) \cup(B-A)=\emptyset$, which implies $(B-A) \cup(A-B)=\emptyset$, which implies $B R A$.
(c) Anti-symmetric: Yes. Suppose that $A R B$ and $B R A$. Then $(A-B) \cup(B-A)=\emptyset$, which implies that both $(A-B)$ and $(B-A)$ are empty, for if either contained an element, then $(A-B) \cup(B-A) \neq \emptyset$. Now $(A-B)$ being empty implies that there does not exist x with $x \in A$ and $x \notin B$. Hence for all x, either $x \notin A$ or $x \in B$. Therefore if $x \in A$, then we must have $x \in B$. This proves that $A \subseteq B$. The same argument, with the roles of A and B reversed, shows that if $(B-A)$ is empty, then $B \subseteq A$. We've now shown that $(A-B) \cup(B-A)=\emptyset$ implies $A=B$. This proves that R is anti-symmetric.
(d) Transitive: Yes. Suppose that $A R B$ and $B R C$. In part (c), we showed that this implies $A=B$ and $B=C$. Hence $A=C$, and so by part (a), $A R C$. Hence R is transitive.
