Math 236, solutions to practice exam

P	Q	R	$Q \lor R$	$P \Rightarrow (Q \lor R)$	$P \Rightarrow Q$	$P \Rightarrow R$	$(P \Rightarrow Q) \lor (P \Rightarrow R)$
T	T	T	T	Т	T	T	Т
T	T	F	T	T	T	F	T
T	F	T	T	T	F	T	T
T	F	F	F	F	F	F	F
F	T	T	T	T	T	T	T
F	T	F	T	T	T	T	T
F	F	T	T	T	T	T	T
F	F	F	F	T	T	T	T

1. Here is a truth table involving the two propositions:

Comparing the fifth column and the last column, we see that they are the same, and hence the two propositions are logically equivalent.

- 2. There exists a positive integer n such that for all positive integers k, either k is not prime or $k^2 > n$.
- 3. We argue by induction on n.

When n = 1, the claim is that $\frac{1}{1 \cdot 5} = \frac{1}{4(1) + 1}$, which is clearly true.

Now suppose that $k \geq 1$ is given, and that the result holds for k. Then our induction hypothesis says that

$$\frac{1}{1\cdot 5} + \frac{1}{5\cdot 9} + \dots + \frac{1}{(4k-3)(4k+1)} = \frac{k}{4k+1}.$$

Now note that $\frac{1}{(4(k+1)-3)(4(k+1)+4)} = \frac{1}{(4k+1)(4k+5)}$, and when we add this to both sides of the equation above, we find

$$\frac{1}{1\cdot 5} + \frac{1}{5\cdot 9} + \dots + \frac{1}{(4k-3)(4k+1)} + \frac{1}{(4k+1)(4k+5)} = \frac{k}{4k+1} + \frac{1}{(4k+1)(4k+5)}$$
$$= \frac{k(4k+5)+1}{(4k+1)(4k+5)}$$
$$= \frac{(4k+1)(k+1)}{(4k+1)(4k+5)}$$
$$= \frac{k+1}{4k+5}$$

This chain of equations establishes the result for k + 1, and completes the proof.

4. (a) This statement is false. Here is a counterexample: let $A = \{1\}$ and $B = \{2\}$. Then we have $\mathcal{P}(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$ and $\mathcal{P}(A) \cup \mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}\}$. Note that $\{1, 2\} \in \mathcal{P}(A \cup B)$ but $\{1, 2\} \notin \mathcal{P}(A) \cup \mathcal{P}(B)$.

(b) This statement is true. To prove it, suppose that $S \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Then either $S \in \mathcal{P}(A)$ or $S \in \mathcal{P}(B)$. If $S \in \mathcal{P}(A)$, then $S \subseteq A$, and therefore $S \subseteq A \cup B$, whence $S \in \mathcal{P}(A \cup B)$. Similarly, if $S \in \mathcal{P}(B)$, then $S \subseteq B$, and therefore $S \subseteq A \cup B$, whence $S \in \mathcal{P}(A \cup B)$. In either case, $S \in \mathcal{P}(A \cup B)$, so the result holds.

(c) This statement is false, since we proved in part (a) that $\mathcal{P}(A \cup B) \not\subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$.

- 5. To prove that a number is *not* rational, it's a good idea to use an indirect proof. Let's use a proof by contradiction. Suppose to the contrary that $\log_3(5)$ is rational. Then there exist integers p and q such that $\log_3(5) = p/q$. Note that since $\log_3(5)$ is positive (in fact, since 5 > 3, it is at least 1), we in fact have that both p and q are positive. By the definition of logarithm, $\log_3(5) = p/q$ means that $3^{p/q} = 5$. Raising both sides to the q power then gives $3^p = 5^q$. But 3^p is divisible by 3 (because p is a positive integer), and 5^q is not. This contradiction proves the theorem.
- 6. (a) R is not symmetric, since $(2,1) \in R$ but $(1,2) \notin R$. R is not anti-symmetric, since $(1,3) \in R$ and $(3,1) \in R$ but $1 \neq 3$.

(b) To be systematic about this, we need to first consider all $(x, y) \in R$ with x = 1. This gives just one pair, namely (1,3), so y = 3. Now let's find all (y, z) with y = 3, namely (3, 1) and (3,3). Transitive requires that since R contains the two pairs (1,3) and (3,1), then S must contain (1,1). Also, since R contains (1,3) and (3,3), S must contain (1,3); but R already has (1,3), so we don't need to add anything.

So we must add (1,1) to R to get the relation $\{(1,1), (2,1), (1,3), (3,1), (3,3), (4,1)\}$. Considering all $(x, y) \in R$ with x = 1 as before, we see that we do not need to add any elements to the new relation. So consider all $(x, y) \in R$ with x = 2. The only one that needs attention is the pair (2, 1) and (1, 3); we must add (2, 3), which gives a new relation

 $\{(1,1), (2,1), (2,3), (1,3), (3,1), (3,3), (4,1)\}$

Now if we considering all $(x, y) \in R$ with x = 1 or x = 2, we need to add no new elements. The same goes for x = 3. To account for the pairs with x = 4, we need to add (4, 3). Thus we take

$$S = \{(1,1), (2,1), (2,3), (1,3), (3,1), (3,3), (4,1), (4,3)\}.$$

7. (a) Reflexive: Yes, since $(A - A) = \emptyset$, so $(A - A) \cup (A - A) = \emptyset$.

(b) Symmetric: Yes, since $S \cup T = T \cup S$ for any sets S and T, and so A R B implies $(A - B) \cup (B - A) = \emptyset$, which implies $(B - A) \cup (A - B) = \emptyset$, which implies B R A.

(c) Anti-symmetric: Yes. Suppose that $A \ R \ B$ and $B \ R \ A$. Then $(A - B) \cup (B - A) = \emptyset$, which implies that both (A - B) and (B - A) are empty, for if either contained an element, then $(A - B) \cup (B - A) \neq \emptyset$. Now (A - B) being empty implies that there does not exist x with $x \in A$ and $x \notin B$. Hence for all x, either $x \notin A$ or $x \in B$. Therefore if $x \in A$, then we must have $x \in B$. This proves that $A \subseteq B$. The same argument, with the roles of A and B reversed, shows that if (B - A) is empty, then $B \subseteq A$. We've now shown that $(A - B) \cup (B - A) = \emptyset$ implies A = B. This proves that R is anti-symmetric.

(d) Transitive: Yes. Suppose that $A \ R \ B$ and $B \ R \ C$. In part (c), we showed that this implies A = B and B = C. Hence A = C, and so by part (a), $A \ R \ C$. Hence R is transitive.